AP4 - BIM för produktionsstyrning av platsgjutna betongkonstruktioner i kallt klimat

AP4 - Planning and construction of cast-on-site concrete buildings in cold climate

Smarta plan-, bygg- och förvaltningsprocesser över hela livscykeln

Thomas Olofsson LTU
Tim Johansson, LTU
Mats Emborg Betongindustri/LTU

Testbed Use Cases

- 1. Linking Municipality planning & Building Design process
- 2. Moving from Architectural design model to (planned and) as_realized models
- 3. Linking City model building to Building
- 4. Linking 3D real estates and the individual elements to the BIM model in Nova
- 5. Linking Sensor data to Realized objects (and then linking to their designed objects for requirement values?)
- 6. Planning and construction of cast-on-site concrete buildings (from product as planned to product as realized)

1 = BIM Des (IFC format) v2 - import (PLCS physical elements)
2 = BIM As Planned (IFC format) v1 - import (PLCS planned elements)

2 = BIM As Planned (IFC format) v1 – import (PLCS planned elements)
3 = BIM As Realized (IFC format) v1 – import (PLCS realized elements) & BIM As Sensor obj

Background

- Concrete hardening is dependent on the temperature
- Type of concrete hardening measures need to be selected according to weahter conditions
- The concrete mix is cooling during transport, casting and hardening.
- Measure how much!

- Concrete hardening measures:
 - Cover and insulate
 - Increase the temperature of the ready mixed concrete "hot concrete"
 - Heat the surrounding air and/or surrounding building parts
 - Use heating cables in the concrete mix
 - Select a concrete recipe with higher strenght and faster hardening process

Case: NCCs Folkboende koncept

- Project in Nordmaling
- Cast-on-site concrete framework
 - Casting of slab removal of formwork ~15 days, requirement 70% of design concrete strength.
 - Casting of walls (removal of formwork 16-18 hours req. concrete strength >5 MPa
- Planning and follow-up of curing using temperature sensors

2016-03-152016-03-162016-03-172016-03-182016-03-192016-03-202016-03-2016-03-22

Possible planning and follow-up tools

BIM modell

Planning using Line of balance

- PPB Swedish software for planning of production of caston-site constructions
- BI distant logging of measurements

Current workflow

- hardening
- insulation
- heating
- How is the production affected?

Prototype I - workflow

Prototyp I – 4D

Ok to remove wall formwork

Color codes

- Red < 0-5 Mpa
- Yellow < 25 MPa⊸
- Grön > 25 MPa (70%)

Ok to remove slab formwork

SMART BUILT ENVIRONMENT

Prototyp II – workflow

- Integration planning, weather forecast and curing measures
 - Casting sequence
 - Curing measures
 - Import of SMHI data
- 4D visualisation using UNITY

Prototype II -4D

Example – temperature measurements

Prototyp III – Optimization of curing measures

- How choice of curing measures affect production cost, time and CO_{2eq}
- Simulating work and curing process using Discrete Event Simulation and Hett
- The evaluation is based on the concrete materials used, the energy and time used for production of the walls and slabs

Doktorand Shiwei Chen

Prototyp III – Optimization of curing measures

Prototyp III – Optimization of curing measures

Curing measure Walls	Details				
Hot concrete	Concrete temperature when curing starts: 5°C				
	Concrete temperature when curing starts: 25°C				
Heating	Heating cables, heat effect: 12 kW				
	Heating cables, heat effect: 6 kW				
Coverage & insulation	12mm plywood formwork with insulation, heat transfer coefficient: 1.8 W/(m ² K) (when wind speed is lower than 2m/s)				
	12mm plywood formwork without insulation, heat transfer coefficient: 5.4 W/(m ² K) (when wind speed is lower than 2m/s)				
Concrete of higher grade	C25/30, standard Portland cement				
	C28/35, standard Portland cement				

Curing measure Slabs	Details				
Hot concrete	Concrete temperature when curing starts: 5°C				
	Concrete temperature when curing starts: 25°C				
Heating	Steam heating, heat effect: 48 kW; diesel consumption: 4.4				
	kg/h				
	Steam heating, heat effect: 66 kW; diesel consumption: 6.07				
	kg/h				
Coverage & insulation	Slab cover, normal tarps, heat transfer coefficient: 8.3 W/(m ²				
	K) (when wind speed is lower than 2m/s)				
	Slab cover, insulated tarps, heat transfer coefficient: 2.7 W/(m ²				
	K) (when wind speed is lower than 2m/s)				
Concrete of higher grade	C25/30, standard Portland cement				
	C28/35, standard Portland cement				

Curing measure Walls & Slab	Details		
Changing number of workers	Carpenters: 10; Concrete workers: 10; Installation workers: 10.		
	Carpenters: 15; Concrete workers: 15; Installation workers: 15.		
Changing wall casting delay	No delay		
	Delay 15 hours for each wall casting		
Changing slab casting delay	No delay		
	Delay 15 hours		

A total of 228 variants have been calculated for Temp 1 2 and 3

Prototyp III - Optimization of curing measures

- The combination of curing measures combines external heating, insulation and warmer concrete mix
- During certain conditions (temperature/cementtype/energy mix) it is better to select a higher strength concrete mix compared with external heating

Best combinations compared to reference scenario A1

Construction start time	Shortest curing duration	Lowest curing caused CO ₂ emissions	Least curing cost	Pareto solutions
Nov 20 th 2017	A40 -56%	A18 -66%	A26 -15%	A2, A4, A10, A18, A26, A34, A36, A38, A40, A42, A44, A50, A52, A54, A56, A58, A62
Feb 20 th 2018	A40 -60%	A18 -70%	A58 -18%	A2, A4, A18, A34, A36, A38, A40, A42, A50, A52, A54, A58, A62
May 20 th 2018	A40 -53%	A26 -54%	A26 -4%	A2, A4, A10, A12, A26, A34, A36, A40, A42, A44, A46, A52, A56, A58, A62, A64

Further research and development

- Include drying out time of concrete slabs
- Better integration of sensors positions and historical result (machine learning) in the planning GUI
- 3D BIM > calculations > vizualisation

